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Supplementary Figure 1. Tradeoffs between hydropower generation and annual 

greenhouse gas emission for portfolios of proposed Amazon dams. Each point represents a 

portfolio of dams from among 351 proposed projects in the Amazon. The optimal dam portfolios 

for each value of installed capacity (Pareto frontier) are shown in dark blue, and randomly 

generated suboptimal dam portfolios are shown by grey symbols. Results are shown starting 

from existing installed capacity for the set of 158 existing dams (33 GW for an emission of 34 

Tg CO2eq yr-1 over a 20-year horizon and 11 Tg CO2eq yr-1 over a 100-year horizon) and 

presented over a (a) 20- and (b) 100-year horizon.1 Tg = 1012 g. 
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Supplementary Figure 2. Exact and approximate Pareto optimal frontiers for proposed 

dams. The Pareto frontiers indicate the tradeoff analysis between installed capacity and carbon 

intensity (100-year time horizon) for the set of 351 proposed dams. The approximate frontiers 

were computed with 99% and 90% accuracies (ε = 0.01 and 0.1, respectively). While the 

computation of the exact (or provably optimal) Pareto frontier (green points) takes only around 

10 minutes, computation of the approximate Pareto frontiers was much faster (1.5 minutes for an 

accuracy of 99%, black points; 0.5 minutes for an accuracy of 90%, gray points). Also included 

are lines indicating the theoretical guarantees for the approximate solutions. The actual 

accuracies of the approximate solutions are much higher than their theoretical guarantees. The 

approximate Pareto frontier computed with a guarantee of 90% accuracy is only 1% away from 

the exact Pareto frontier, in addition to overlapping with the 99% theoretical guarantee.   
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Supplementary Figure 3. Estimating missing flooded areas. Flooded areas for the subset of 

dams with missing information were estimated using normal multiple linear regression. We 

regressed natural log of flooded area (km2) against a country categorical covariate (levels = 

Bolivia, Brazil, Ecuador, Peru), natural log of installed capacity (MW), natural log of dam 

watershed area (km2), and natural log of elevation (m a.s.l.) using a set of n = 333 existing or 
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proposed dams for which reported flooded areas were available. a, Regression model 

performance displaying the observed flooded areas against fitted areas, the coefficient of 

determination (R2) for the fitted normal multiple linear regression model, and root mean squared 

error (RMSE) predictive accuracy based on leave-one-out cross validation (LOOCV). b, 

Sensitivity analysis demonstrates robustness of conclusions to the use of estimated flooded areas, 

showing that the cumulative frequency distribution of lowland and upland dam carbon intensities 

(100-year time horizon) are similar when the subset of dams with estimated flooded areas are 

included or excluded from analyses, with the exception of upland dams with high carbon 

intensities. 
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Supplementary Figure 4. Examples of the bootstrapping output for existing Amazon dams 

with contrasting power densities. Histograms indicating the 10,000 carbon intensities resulting 

from the bootstrapping output for Chaglla dam in Peru (left) and Balbina dam in Brazil (right), 

considering a 100-year time horizon. The elevation above sea level, installed capacity, flooded 

area, and power density of the dams are indicated in the graphs. The calculated carbon intensity 

of a dam with the power density of Chaglla is below that of a solar power plant7 (~ 50 kg CO2eq 

MWh-1) with equivalent power generation even in a worst-case scenario for emissions. 

Conversely, a dam such as Balbina would emit more than a coal-fired power plant (~ 800 kg 

CO2eq MWh-1) even in a best-case scenario for emissions. Indeed, previous work indicated that 

Balbina emits more GHGs than any type of conventional fossil fuel-fired power plant with 

equivalent energy production11. 
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Supplementary Figure 5. Sensitivity of estimated carbon intensities to variation in the 

assumed net CO2 and CH4 emissions due to reservoir creation. Our analysis considers that 

net CO2 and CH4 emissions are equivalent to 25% and 90% of gross emissions, respectively, 

because there would have been natural emissions of these gases prior to impoundment. We 

varied these percentages separately for CO2 and CH4 to examine the sensitivity of the resultant 

frequency distributions to those assumed percentages. a, for CO2, modeled carbon intensities 

decrease by ≈ 20% when we assume that all CO2 emissions would have occurred in pre-

impoundment conditions (i.e., 0% parameter). b, for CH4, modeled carbon intensities decrease 

by ≈ 30% when we assume that 20% of CH4 emissions would occur in pre-impoundment 

conditions (i.e., 80% parameter). These sensitivity analyses were run for the 100-year time 

horizon estimates. 
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Supplementary Figure 6. Sensitivity of estimated carbon intensities to variation in the 

subset of GHG fluxes used for bootstrapping. This figure shows how much our carbon 

intensity estimates change when we use a subset with only tropical dams (which does not change 

our original estimates, with lines overlapping) and a set with all dams in the global dataset 

regardless of their climate zone (which increases our original estimates by ≈ 10%). This 

sensitivity analysis was run for the 100-year time horizon estimates.  
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Supplementary Figure 7. Validation of calculated carbon intensities. We computed the 

carbon intensities with data for six existing dams in river basins contained within the Amazon 

biome limits. The blue bars indicate the average modeled carbon intensities and the error bars 

show the 95% confidence interval. The red bars indicate the observed carbon intensities. This 

analysis was run for a 100-year time horizon. 
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Supplementary Table 1. Total greenhouse gas (GHG) emissions of Amazon hydropower. Bootstrapped mean and 95% 

confidence intervals (CI) of estimated annual GHG emissions (in Tg CO2eq yr-1) of existing and proposed Amazon hydropower dams 

by region and country. For comparison, it is estimated that global reservoir surfaces (all types included, not only for hydropower) 

annually emit 800 Tg CO2eq (95% CI: 500 – 1,200 Tg CO2-eq)12. n = number of dams, GW = total installed capacity, in GW. 

  Existing 

      20-year time horizon   100-year time horizon 

  
n GW 

Bootstr. 
Mean 

2.5% CI 97.5% CI 
  

Bootstr. 
Mean 

2.5% CI 97.5% CI 

Whole Amazon basin 158 33 35 23 50   14 10 19 

Upland (> 500 m) 91 9 1.4 1.0 1.9   1.3 1.2 1.5 

Lowland (< 500 m) 67 24 33 21 47   13 9 17 

Bolivia 27 1 0.32 0.22 0.52   0.19 0.16 0.23 

Brazil 68 24 33 21 47   13 9 17 

Colombia 0 0 - - -   - - - 

Ecuador 27 5 0.3 0.2 0.4   0.5 0.5 0.6 

Peru 36 3 0.8 0.5 1.0   0.5 0.4 0.6 

  Proposed 

  
  20-year time horizon   100-year time horizon 

  
n GW 

Bootstr. 
Mean 

2.5% CI 97.5% CI 
  

Bootstr. 
Mean 

2.5% CI 97.5% CI 

Whole Amazon basin 351 92 176 114 249   66 47 88 

Upland (> 500 m) 126 25 10 6 14   5.4 4.4 6.4 

Lowland (< 500 m) 225 67 166 107 234   60 42 81 

Bolivia 16 11 29 19 41   10 7 14 

Brazil 212 34 79 51 112   28 20 39 

Colombia 2 0.7 0.3 0.2 0.5   0.18 0.14 0.22 

Ecuador 36 11 0.5 0.4 0.7   1.2 1.1 1.2 

Peru 85 35 67 43 94   24 17 33 
 


